NOVEL SMECTIC C MESOGENS. 3-(2-HYDROXY-4-ALKOXYBENZYLIDENE-AMINO) DIBENZOFURANS

Yo SHIMIZU and Shigekazu KUSABAYASHI*

Department of Applied Chemistry, Faculty of Engineering,
Osaka University, Suita, Osaka 565

3-(2-Hydroxy-4-alkoxybenzylideneamino) dibenzofurans (1) were found to be smectic $C(S_C)$ mesogens, which do not contain an "alkylcore-alkyl" type structure. This implies that the molecular symmetry as seen in the alkyl-core-alkyl structure is a favorable factor but not always required for the appearance of S_C phase and that an appropriate magnitude of the lateral dipole moment is required for the core moiety in the case of an unsymmetrical molecule.

A symmetrical "alkyl-core-alkyl" molecular structure and an appropriate magnitude of the lateral dipole moment are usually considered to be requisites for S_C liquid crystallinity. $^{1)}$ 2-(4-Alkoxybenzylideneamino) fluorenones (2), however, are known to show S_C phase. $^{2)}$ These molecules have no symmetrical structure (a core-alkyl type), but have large dipole moments ascribable to the fluorenone moiety(11.21 × 10^{-30} C m for fluorenone itself $^{3)}$).

Recently, 3-(4-alkoxybenzylideneamino) dibenzofurans have been found to show no S_C phase, although ethoxy to tetradecyloxy derivatives of them show nematic phase and the longer homologous derivatives than a heptyloxy one show smectic A phase. These dibenzofuran derivatives are analogous to 2, but their lateral dipole moments are small as compared with 2 because of the smaller dipole moment of dibenzofuran(2.74 \times 10⁻³⁰C m³⁾). In this study, the title compounds were prepared and whether or not the S_C phase appears was investigated.

$$\begin{array}{c} H-O \\ OC_nH_{2n+1} \\ n=4,5,....,12,14 \end{array}$$

The phase transition temperatures are listed in Table 1. These values were determined by observing textures with a Nikon polarizing microscope.

Some homologues of 1 (pentyloxy to dodecyloxy) showed S_C phase. The S_C phase was identified by the miscibility test with terephthalidene-bis(4-butylaniline) and the textures were Schlieren and broken-fan in homeotropic and homogeneous areas, respectively. All phase transitions of S_C - S_A and S_C -nematic were monotropic

1004 Chemistry Letters, 1985

Table 1. Phase Transition Temperatures($T/^{\circ}C$) of $\frac{1}{C}$				
n ^{a)}	$^{\mathrm{T}}$ C-S $_{\mathrm{C}}$,S $_{\mathrm{A}}$, or N	TSC-SA or N	T _{SA} -N	T _{N-I} b)
4	154.5			179.6
5	135.0	(113.9) ^{c)}		173.9
6	131.1	(115.7)		175.6
7	125.6	(123.5)	128.0	171.1
8	124.8	125.8	136.2	172.0
9	122.6	(118.4)	144.3	168.3
10	121.8	(117.3)	149.2	167.6
11	120.1	(106.6)	152.5	164.3
12	119.8	(101.6)	154.8	162.7
14	118.6		156.0	158.1

- a) carbon number in the terminal alkoxyl chain.
- b) C:crystal, S_{Δ} :smectic A, S_{C} :smectic C, N:nematic and I:isotropic.
-):monotropic transition temperatures.

except for an octyloxy derivative.

The enthalpies of the $S_C^-S_A$ phase transition were too small to be detected by a differential scanning calorimeter (Daini Seikosha, model SSC-560S).

The introduction of a hydroxyl group in 2-site of the benzylidene moiety increases the lateral dipole moment, and consequently these compounds \boldsymbol{l} come to show $\mathbf{S}_{\mathcal{C}}$ phase. This result implies that the molecular symmetry is favorable but not always required for the appearance of $\mathbf{S}_{\mathbf{C}}$ phase if the molecule has an appropriate magnitude of the lateral dipole moment.

The length of the terminal alkyl chain significantly affects the $S_C^-S_A^-$ and $\mathbf{S}_{\mathcal{C}}$ -nematic phase transition temperatures. The octyloxy derivative has the highest value of the $S_C^-S_A$ transition temperature, which decreases with both longer and shorter alkyl lengths. This also implies that there must be a certain relation between the $S_C^-S_A$ or S_C^- nematic phase transition temperatures and the length of the terminal alkyl chain.

References

- 1) G.W.Gray and J.W.Goodby, "Smectic Liquid Crystals—textures and structures," Leonard Hill, Glasgow and London (1984).
- 2) N.H.Tinh, H.Gasparoux, J.Malthete, and C.Destrade, Mol.Cryst.Liq.Cryst., 114,
- 3) T.Nagai, Y.Koga, H.Takahashi, and K.Higashi, Bull.Chem.Soc.Jpn., <u>47</u>, 1022(1974).
- 4) Y.Shimizu, A.Ikegami, M.Nojima, and S.Kusabayashi, Mol.Cryst.Liq.Cryst., in contribution.

(Received April 26, 1985)